Evaluating Influential Nodes in Social Networks by Local Centrality with a Coefficient
نویسندگان
چکیده
Influential nodes are rare in social networks, but their influence can quickly spread to most nodes in the network. Identifying influential nodes allows us to better control epidemic outbreaks, accelerate information propagation, conduct successful e-commerce advertisements, and so on. Classic methods for ranking influential nodes have limitations because they ignore the impact of the topology of neighbor nodes on a node. To solve this problem, we propose a novel measure based on local centrality with a coefficient. The proposed algorithm considers both the topological connections among neighbors and the number of neighbor nodes. First, we compute the number of neighbor nodes to identify nodes in cluster centers and those that exhibit the “bridge” property. Then, we construct a decreasing function for the local clustering coefficient of nodes, called the coefficient of local centrality, which ranks nodes that have the same number of four-layer neighbors. We perform experiments to measure node influence on both real and computer-generated networks using six measures: Degree Centrality, Betweenness Centrality, Closeness Centrality, K-Shell, Semi-local Centrality and our measure. The results show that the rankings obtained by the proposed measure are most similar to those of the benchmark Susceptible-Infected-Recovered model, thus verifying that our measure more accurately reflects the influence of nodes than do the other measures. Further, among the six tested measures, our method distinguishes node influence most effectively.
منابع مشابه
The Influence of Location on Nodes’ Centrality in Location-Based Social Networks
Nowadays, due to the widespread use of social networks, they can be used as a convenient, low-cost, and affordable tool for disseminating all kinds of information and data among the massive users of these networks. Issues such as marketing for new products, informing the public in critical situations, and disseminating medical and technological innovations are topics that have been considered b...
متن کاملfinding influential individual in Social Network graphs using CSCS algorithm and shapley value in game theory
In recent years, the social networks analysis gains great deal of attention. Social networks have various applications in different areas namely predicting disease epidemic, search engines and viral advertisements. A key property of social networks is that interpersonal relationships can influence the decisions that they make. Finding the most influential nodes is important in social networks b...
متن کاملLeveraging local h-index to identify and rank influential spreaders in networks
Identifying influential nodes in complex networks has received increasing attention for its great theoretical and practical applications in many fields. Some classical methods, such as degree centrality, betweenness centrality, closeness centrality, and coreness centrality, were reported to have some limitations in detecting influential nodes. Recently, the famous h-index was introduced to the ...
متن کاملCommunity Detection using a New Node Scoring and Synchronous Label Updating of Boundary Nodes in Social Networks
Community structure is vital to discover the important structures and potential property of complex networks. In recent years, the increasing quality of local community detection approaches has become a hot spot in the study of complex network due to the advantages of linear time complexity and applicable for large-scale networks. However, there are many shortcomings in these methods such as in...
متن کاملLocal structure entropy of complex networks
Identifying influential nodes in the complex networks is of theoretical and practical significance. There are many methods are proposed to identify the influential nodes in the complex networks. In this paper, a local structure entropy which is based on the degree centrality and the statistical mechanics is proposed to identifying the influential nodes in the complex network. In the definition ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- ISPRS Int. J. Geo-Information
دوره 6 شماره
صفحات -
تاریخ انتشار 2017